Some Remarks on Finsler Manifolds with Constant Flag Curvature
نویسندگان
چکیده
This article is an exposition of four loosely related remarks on the geometry of Finsler manifolds with constant positive flag curvature. The first remark is that there is a canonical Kähler structure on the space of geodesics of such a manifold. The second remark is that there is a natural way to construct a (not necessarily complete) Finsler n-manifold of constant positive flag curvature out of a hypersurface in suitably general position in CP. The third remark is that there is a description of the Finsler metrics of constant curvature on S in terms of a Riemannian metric and 1-form on the space of its geodesics. In particular, this allows one to use any (Riemannian) Zoll metric of positive Gauss curvature on S to construct a global Finsler metric of constant positive curvature on S. The fourth remark concerns the generality of the space of (local) Finsler metrics of constant positive flag curvature in dimension n+1 > 2. It is shown that such metrics depend on n(n+1) arbitrary functions of n+1 variables and that such metrics naturally correspond to certain torsion-free S·GL(n,R)structures on 2n-manifolds. As a by-product, it is found that these groups do occur as the holonomy of torsion-free affine connections in dimension 2n, a hitherto unsuspected phenomenon.
منابع مشابه
On Stretch curvature of Finsler manifolds
In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied. In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...
متن کاملOn the k-nullity foliations in Finsler geometry
Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...
متن کاملRanders Manifolds of Positive Constant Curvature
We prove that any simply connected and complete Riemannian manifold, on which a Randers metric of positive constant flag curvature exists, must be diffeomorphic to an odd-dimensional sphere, provided a certain 1-form vanishes on it. 1. Introduction. The geometry of Finsler manifolds of constant flag curvature is one of the fundamental subjects in Finsler geometry. Akbar-Zadeh [1] proved that, u...
متن کاملFinsler Manifolds with Nonpositive Flag Curvature and Constant S-curvature
The flag curvature is a natural extension of the sectional curvature in Riemannian geometry, and the S-curvature is a non-Riemannian quantity which vanishes for Riemannian metrics. There are (incomplete) nonRiemannian Finsler metrics on an open subset in Rn with negative flag curvature and constant S-curvature. In this paper, we are going to show a global rigidity theorem that every Finsler met...
متن کاملSome Rigidity Theorems for Finsler Manifolds of Sectional Flag Curvature
In this paper we study some rigidity properties for Finsler manifolds of sectional flag curvature. We prove that any Landsberg manifold of non-zero sectional flag curvature and any closed Finsler manifold of negative sectional flag curvature must be Riemannian.
متن کامل